Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
Year : 2021  |  Volume : 19  |  Issue : 4  |  Page : 230-235

Airborne particle control methods in dental clinics: A low-cost technique of assessment

1 Department of Dental and Oral Surgery, CMC, Vellore, Tamil Nadu, India
2 Department of Infectious Diseases, CMC, Vellore, Tamil Nadu, India
3 Department of Clinical Microbiology, Hospital Infection Control Committee Officer, CMC, Vellore, Tamil Nadu, India
4 Department of Engineering, CMC, Vellore, Tamil Nadu, India

Correspondence Address:
Dr. Rabin Chacko
Professor, Dental Unit 1, Telephone No.S 0416 -2283641
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/cmi.cmi_64_21

Rights and Permissions

Background and Objectives: The COVID-19 pandemic has highlighted the risk of airborne transmission of infections in health-care facilities such as dental clinics. In this experimental study, methods to control airborne particles in a simulated dental clinic setting were measured and compared using a low cost and convenient technique. Materials and Methods: Particles representing inhalable airborne particles were generated using smoke from incense sticks and their concentration measured by handheld particle sensors whereas using different engineering controls for the particle removal in dental clinic equivalent settings. Measurements were made at short (<3 ft) and intermediate (between 3 and 6 ft) distance from the source. The particle filtration through surgical masks and N95 masks was also studied. Results: Natural ventilation, by keeping windows open, can reduce intermediate range particles (removal of 4.7% of ambient particles/min). However, in closed facilities without natural ventilation, particle removal by air purifier combined with overhead fan or with high volume evacuators was found most suitable for intermediate range particles (25.9%/min) and for short range particles (27.6%/min), respectively. N95 masks were found to filter out 99.5% of the generated PM 2.5 particles. Conclusions: Potentially inhalable airborne particles can persist in the air of a dental clinic. The use of N95 masks and environmental controls is essential for the dental team's safety. The choice of an engineering control is governed by multiple factors explained in the study. Smoke particles generated by incense sticks and measurement by handheld particle sensors are low-cost methods to estimate the effectiveness of airborne particle controls.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded130    
    Comments [Add]    

Recommend this journal